
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

Benchmark Intelligent Agent Systems for Distributed Battle Tracking:

Final Report

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

An intelligent multiagent system that maintains distributed situational awareness was developed for the U.S. Army CERDEC

C2D (Command and Control Directorate) as part of a distributed battle command for tracking system. The benchmark DBTS

(Distributed Battle Tracking System) was implemented using the JADE multiagent framework. Each element that moves as a

single entity (such as a tank, foot solider, or helicopter) is endowed with a standard set of agents. The DBTS allows multiple

entities to alert each other when they diverge from the common plan and to establish a new common plan. The agents

perform JADE-based platform-to-platform communication to communicate with other mission entities. To exploit the ubiquity

S

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

20-06-2008

13. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Distribution authorized to U.S. Government Agencies Only, Contains Proprietary information

9. SPONSORING/MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office

 P.O. Box 12211

 Research Triangle Park, NC 27709-2211

15. SUBJECT TERMS

Situation awareness, Multiagent Systems, Rule engine, Web services

Albert Esterline

North Carolina A&T State University

Office of Sponsored Programs

North Carolina A&T State University

Greensboro, NC 27411 -

REPORT DOCUMENTATION PAGE

b. ABSTRACT

U U

c. THIS PAGE

2. REPORT TYPE

Final Report

17. LIMITATION OF

ABSTRACT

SAR

15. NUMBER

OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

W911NF-07-1-0367

622782

Form Approved OMB NO. 0704-0188

52709-CI-II.1

11. SPONSOR/MONITOR'S REPORT

NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)

 ARO

8. PERFORMING ORGANIZATION REPORT

NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER

Albert Esterline

336-334-7245

3. DATES COVERED (From - To)

29-May-2007

Standard Form 298 (Rev 8/98)

Prescribed by ANSI Std. Z39.18

- 28-Feb-2008

U

Approved for public release; distribution unlimited

Benchmark Intelligent Agent Systems for Distributed Battle Tracking: Final Report

Report Title

ABSTRACT

An intelligent multiagent system that maintains distributed situational awareness was developed for the U.S. Army CERDEC C2D

(Command and Control Directorate) as part of a distributed battle command for tracking system. The benchmark DBTS (Distributed Battle

Tracking System) was implemented using the JADE multiagent framework. Each element that moves as a single entity (such as a tank, foot

solider, or helicopter) is endowed with a standard set of agents. The DBTS allows multiple entities to alert each other when they diverge

from the common plan and to establish a new common plan. The agents perform JADE-based platform-to-platform communication to

communicate with other mission entities. To exploit the ubiquity of Web services in the military and other domains, each entity in the

benchmark system exposes a standard set of Web services. Jess (Java Expert Shell System) is a rule engine for the Java platform and is an

interpreter for the Jess rule language. It is used here to implement policies that maintain distributed situation awareness, such as when to

issue warnings and alerts. Simple motion planning techniques are used to establish paths and speeds for the agents; they can also be used

for re-planning after an alert has been raised.

(a) Papers published in peer-reviewed journals (N/A for none)

List of papers submitted or published that acknowledge ARO support during this reporting

period. List the papers, including journal references, in the following categories:

(b) Papers published in non-peer-reviewed journals or in conference proceedings (N/A for none)

 0.00Number of Papers published in peer-reviewed journals:

Number of Papers published in non peer-reviewed journals:

Monica E. Barnette and Janelle C. Mason, A Prototype Intelligent Multiagent Benchmark for a Distributed Situational Awareness System,

a graduate oral presentation given at the 22nd Annual Ronald E. McNair Commemorative Symposium, North Carolina A&T State

University, Greensboro, NC, Jan. 27-29, 2008.

(c) Presentations

 0.00

Number of Presentations: 1.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts): 0

Peer-Reviewed Conference Proceeding publications (other than abstracts):

(d) Manuscripts

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): 0

Number of Manuscripts: 0.00

Number of Inventions:

Graduate Students

PERCENT_SUPPORTEDNAME

David Reid 1.00

Janelle Mason 0.20

Monica Barnette 0.20

 1.40FTE Equivalent:

 3Total Number:

Names of Post Doctorates

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Faculty Supported

National Academy MemberPERCENT_SUPPORTEDNAME

Albert Esterline 0.25 No

 0.25FTE Equivalent:

 1Total Number:

Names of Under Graduate students supported

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

The number of undergraduates funded by this agreement who graduated during this period with a degree in

science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue

to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):

Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for

Education, Research and Engineering:

The number of undergraduates funded by your agreement who graduated during this period and intend to

work for the Department of Defense

The number of undergraduates funded by your agreement who graduated during this period and will receive

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

 0.00

 0.00

 0.00

 0.00

 0.00

 0.00

......

......

......

......

......

......

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period: 0.00......

Names of Personnel receiving masters degrees

NAME

David Reid

Janelle Mason

Monica Barnette

 3Total Number:

Names of personnel receiving PHDs

NAME

Total Number:

Names of other research staff

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Sub Contractors (DD882)

Inventions (DD882)

Benchmark Intelligent Agent Systems for
Distributed Battle Tracking

Principal Investigator: Albert Esterline
Department of Computer Science

North Carolina A&T State University
Greensboro, NC 27411

esterlin@ncat.edu
(336) 334-7245, ext. 462

Contract No.: W911NF-07-1-0367
Funding Period: 5/29/07-2/28/08
Award Amount: $49,638
ARO Grants Officer’s Representative: Dr. Cliff Wang, cliff.wang@us.army.mil
Technical Contact: Israel Mayk, CERDEC C2D, Israel.Mayk@us.Army.Mil

List of Illustrations
Figure1. Simulated DSAS p. 2

Statement of the problem studied
This effort addressed the need on the part of the US Army Communications-

Electronics Research, Development, and Engineering Center (CERDEC), Command and
Control Directorate (C2D) for a distributed battle tracking system (DBTS) to maintain
distributed situation awareness. It is envisioned that each entity in a military operation
will have a multi-agent system (MAS) networked together as an integral part of C2D’s
development of distributed battle command tracking (DBCT) technology. This MAS is
specifically a distributed battle tracking system (DBTS), maintaining distributed situation
awareness. The Java Agent DEvelopment (JADE) framework is a software framework
implemented in Java that simplifies implementation of a MAS through middleware
compliant with the Foundation for Intelligent Physical Agents (FIPA) specifications. To
evaluate the suitability of JADE for implementing a DBTS, a benchmark JADE-based
DBTS implementation was sought. Such an effort should also contributes directly to
CERDEC’s mission and lead to a better understanding of the potential of a MAS
command and control environment.

Summary of the most important results
The initial prototype involved only one simulated entity. Later work introduced

multiple entities and enhanced the prototype with Web services and policies enforced by
a rule engine. We first describe the single-entity prototype and then address the
enhancements.

mailto:esterlin@ncat.edu
mailto:cliff.wang@us.army.mil
mailto:Israel.Mayk@us.Army.Mil

Benchmark Intelligent Agent Systems for Distributed Battle Tracking Esterline

Single-entity Implementation
The first work completed implemented a prototype Distributed Situational

Awareness System (DSAS) for only one entity. The agents on a given entity monitor and
predict the entity’s deviation from the current plan. This may result in a warning to the
entity so that it may adjust its plan accordingly without communicating with the other
mission members. In more extreme circumstances, projected deviation may trigger an
alert to other members of the unit. The goal is to maintain distributed situation awareness
within the unit while minimizing communication since communication ties down
bandwidth, consumes battery power, and, most critically, potentially provides a signature
to the enemy.

RPL RMN

RPR

RDS

DSAS

Simulated Driver and GPS

Other
DSASs

GPS
signal

All
commun-

ication

Figure 1. Simulated DSAS

The standard agents within any entity are
(see figure 1) the Driver Agent, the GPS
Agent, the Monitor Agent (RMN), the
Predictor Agent (RPR), and the Planner Agent
(RPL). Various messages are sent to the
Driver and GPS agents. The RDS is an agent
intended to forward messages generated within
the entity to the RDS agents of other entities,
and it is intended to forward messages sent by
all other entities to the appropriate agents in
the entity in question. RMN receives (via
RDS) alive and alert messages from the other
entities as well as their plans, and it sends an
alive update message to other entities via RDS
to keep them up to date on the status of the
entity. Also, RMN sends the entity’s actual
location to RPL and RPR, which sends a prediction to RPL on request. RPL is
responsible for the motion plan for the entity, which is intended to be sent (via RDS) to
the other entities. Also, when the actual location or time deviates sufficiently from the
planned location or time, RPL sends an alert to the other entities via RDS.

In the actual implementation, RDS is essentially a stub that communicates with the
other agents in the DSAS but does not communicate beyond the single-entity DSAS. The
plan is provided by a text file read by RPL, and the positions are provided by another text
file, which is read by the GPS agent. All agents, however, are implemented as true JADE
agents, and all inter-agent communication uses the JADE ACL (Agent Communication
Language). Some parameters are adjustable either by the user (namely, distance and time
thresholds for Alive messages, distance threshold for Alert messages, and prediction) or
by the software engineer through the parameters of the code, such as enabling of
debugging or validation testing output and JADE’s GUI’s for system agents. There are
additional optional dummy, sniffer, socket proxy, and log manager agents with GUI’s,
which can be used to inspect agent interactions and log data on a per package basis.

Validation testing was performed using a plan file of waypoints simulating the route
the simulated entity is expected to follow and one of twelve files with waypoints
simulating GPS signals received for the route taken by the entity. The latter are called
actual-waypoint files, where “actual” here is in contrast to “predicted.” Every test used

 2

Benchmark Intelligent Agent Systems for Distributed Battle Tracking Esterline

the same plan file and one of the twelve actual-waypoint files. Each line of a file is a
waypoint represented by three integers, the first two providing grid coordinates, and the
third being the time coordinate. No units are needed for this simulation.

Each actual waypoint file contains eight waypoints chosen to trigger Alive and Alert
messages in a certain pattern. In these test runs, an Alive message was triggered when
the entity had moved at least distance 5 from where it was when it sent the last Alive
message or the time since the last Alive message was at least 2. An Alert message was
sent when the entity had exceeded a distance threshold from the plan segment a certain
threshold number of times in a row; for these tests, the distance threshold was 1 and the
threshold for the number of consecutive off-plan actual waypoints was 2. The waypoints
in the actual-waypoint files were also chosen so that each file contains a transition from
one plan segment to another, which requires an actual waypoint within the threshold
distance of the plan waypoint where the segment transition occurs. The first six actual-
waypoint files were designed to contain actual waypoints that generate Alive and Alert
messages in interesting patterns when the current actual position is compared with the
planned position for the current time.

The remaining six actual-waypoint files were designed to contain actual waypoints
that give rise to predicted waypoints generating interesting patterns of Alive and Alert
messages. Prediction is a user selectable feature that uses linear extrapolation to predict
the entity’s future location. This has the effect of sending Alert messages earlier than they
would be sent without prediction if the entity is currently heading in a direction that
would take it out of the on-plan region. It also has the corresponding effect of ending
Alert messages earlier if the entity is off-plan but heading in a direction that will put it
back on-plan.

The DSAS was run on the first six actual-waypoint files with prediction off and then
was run again on the same files with prediction on. The DSAS was then run on actual-
waypoint files 7-12 only with prediction on since these files were designed so that the
predicted points would generate the desired behavior. Note that there was a total of
eighteen test runs. Also note that the sequence of Alive messages for a given actual-
waypoint file will be the same whether or not prediction is turned on since the RMN
agent determines whether an Alive message should be generated before it calculates a
prediction (if in fact it does so). The MAS successfully performed all functions specified
by the design, and validation testing confirmed that input data was processed and
communicated accurately among agents with and without the prediction feature enabled.
Transitions from one plan segment to another also functioned as designed.

In summary, each agent performs the role for which it was intended, and all agents
worked together to form a modular, easily understood and extensible DSAS that can be
run and developed further on any platform capable of running Java. By implementing the
agents with the dummyAgent class, each agent can be controlled through its GUI to
simplify testing and debugging without continually restarting the JADE environment.
The GUIs of the dummyAgent and other JADE system agents will also be beneficial
when testing multiple DSAS as a distributed MAS.

Enhancements with Web Services
To allow entities to expose and to consume Web services, this project is uses the

Apache Axis (Apache eXtensible Interaction System) open source SOAP engine. It is a

 3

Benchmark Intelligent Agent Systems for Distributed Battle Tracking Esterline

framework for constructing Web service providers and consumers. It supports WSDL,
allowing the user easily to build stubs, to access remote services, and to automatically
export machine-readable descriptions of deployed services. Axis runs as a servlet to
process the incoming message, extract information from the message headers and
payloads, and to provide the RPC interface. Apache Tomcat is a popular servlet
container and is used in this project. UDDI (Universal Description, Discovery and
Integration) is a OASIS yellow-pages standard that defines a way to publish and discover
information about Web services. When a service is registered with UDDI, two SOAP
messages are exchanged. The first establishes authentication, and the second registers the
Web service, whereby the URL and WSDL document are added to the description field.
The registry can then be used by service requesters to locate the services they need. The
current work uses jUDDI, which is an open source Java-based implementation of a UDDI
registry. jUDDI-enabled applications can look up services in the UDDI registry and then
proceed to “call” those Web services directly. Also, WSDL documents and URLs are
stored persistently in a MySQL database and provided in the registry.

This research is breaking new ground in showing how Web service orchestration can
recommend the sequence and coordination of activities, tasks and events for the entities.
Shadow agents, which provide cache summaries of information available from
corresponding agents on other entities, are introduced to allow entities to track other
entities. Finally, a unique system of Web services, agents, and rules maintains distributed
situation awareness even under adverse conditions.

Enhancements Involving the Rule Engine
Jess (Java Expert System Shell) is a rule engine and scripting language that supports

rule-based as well as procedural programming. This rule engine is dynamic and
implemented in Java while providing rule-based reasoning able to provide intelligence
for an agent. A major advantage of Jess is its speed and efficiency since it uses the Rete
algorithm. Due to its declarative paradigm, Jess can continuously apply a collection of
rules to a collection of facts by pattern matching. Jess requires a working memory, a fact
base that contains all data that the rule system is working with. It may hold both the
premises and the conclusions of the rules. It is up to the designer to determine what
should be stored in the working memory. In order to make searching the working
memory a very fast operation, one or more indices are maintained on the working
memory. Jess maintains an agenda containing the rules that currently may fire. Once the
rule engine determines which rule to fire, it executes that rule’s action part.

Motion planning is kept simple and is implemented only to provide interesting
scenarios for policies. We use techniques based on visibility graphs and convex hulls.
For simplicity, we assume that all obstacles are convex polygons. Since there are
multiple participants in a mission, the plan for one entity must take into consideration the
plans for the other entities, but, aside from the entities participating in the mission, the
environment is assumed static. With a collection of entities, we form the convex hull of
the vertices of the obstacles. The paths of two of the entities follow opposite sides of this
convex hull; the paths of other entities follow edges of the visibility graph that will
generally be in the interior of the convex hull.

For re-planning, the visibility graph and convex hull are retained. The extent of re-
planning is governed by policies encoded in Jess rules. We can identify two extremes. If

 4

Benchmark Intelligent Agent Systems for Distributed Battle Tracking Esterline

the deviation is relatively slight, it might suffice simply to have the divergent entity
return to the original path in the shortest time; this might require other entities to slow
down for some time. If the deviation is relatively large, or if more than one entity
deviates, it might be best to come up with entirely new plans. Note that, in terms of Web
services, the coordination suggested here is similar to choreography; this is especially so
when expectations of others comes into play.

Policies are encoded as Jess rules and are enforced by the Jess rule engine. The
following are several areas for which policies are needed.

When to Send an Alert
The single-entity implementation sends alerts when it is predicted that the distance
between the entity and its intended path exceeds a given distance threshold or when
the time the entity is at a given point is outside a given time threshold. There aree
other conditions under which an alert could be essential for maintaining distributed
situation awareness, such as when an entity discovers that a bridge that several entities
intended to use is impassable or when the unanticipated presence of the enemy is
detected. In general, alerts should not be suppressed in the interest of reducing an
entity’s signature since they generally signal critical conditions.

Something else that is useful is to have an alert issued by one entity trigger an
alert by another entity. For example, if one entity sends an alert (along with its
anticipated location) because it is about to exceed its distance threshold, an entity
receiving this alert might determine that there is no way the first entity could get back
to the original path and maintain a relation to it without itself modifying its plan.
Cascading alerts like this could indicate the need for more drastic revision of the plan,
perhaps with help from mission-level resources.

When to Ask for Information and What to Ask For
Entities should consume services sparingly since the communication would increase
their signatures. Still, a certain amount of information must be shared for the entities
to maintain a common plan. During re-planning, entities must share their plans and
priorities, and certain central services must be used. These central services include
orchestration (for global coordination, for example, to ensure that all regions are
searched) and global alerting (for example, to define no-go areas). Policies must be
developed for which agents provide which services.

What to do with Alerts from Others
When an alert is received from another entity, comprehending its significance is a
question of Level 2 situation awareness (SA). To achieve this, there must be rules that
establish what actions to perform and how to update working memory. For distributed
SA, these rules will capture expectations about the behavior of other entities.

This research is breaking new ground in formulating and enforcing rules within a
multiagent system to maintain distributed situation awareness in a group of entities
conducting a military mission. The rules establish policies for raising and responding to
alerts and for consuming Web services. Particularly significant are the policies for
various extents of re-planning in response to alerts, although the techniques for planning
and re-planning are kept simple. The policies enforced in the system amount to a kind of
choreography from the point of view of the Web services.

 5

